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1 Dispersive approach to HLbL

Reminder: BTT Lorentz decomposition

Lorentz decomposition of the HLbL tensor:
→ Bardeen, Tung (1968) and Tarrach (1975)

Πµνλσ(q1, q2, q3) =
∑
i

T µνλσi Πi(s, t, u; q2
j )

• Lorentz structures manifestly gauge invariant

• scalar functions Πi free of kinematic singularities
⇒ dispersion relation in the Mandelstam variables
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1 Dispersive approach to HLbL

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ + . . .
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intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ

two-pion intermediate state in first channel

+ . . .

5



1 Dispersive approach to HLbL

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ + . . .

higher intermediate states
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1 Dispersive approach to HLbL

Resonance contributions to HLbL?

• unitarity: resonances unstable, not asymptotic states
⇒ do not show up in unitarity relation

• analyticity: resonances are poles on unphysical
Riemann sheets of partial-wave amplitudes
⇒ describe in terms of multi-particle intermediate
states that generate the branch cut

• here: resonant ππ contributions in S-wave (f0) and
D-wave (f2)

• resonance model-independently encoded in
ππ-scattering phase shifts
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1 Dispersive approach to HLbL

Rescattering contribution

• neglect left-hand cut due to multi-particle
intermediate states in crossed channel

• two-pion cut in only one channel:

Πππi =
1

2

(
1

π

∫ ∞

4M2
π

dt′
ImΠππi (s, t′, u′)

t′ − t
+

1

π

∫ ∞

4M2
π

du′
ImΠππi (s, t′, u′)

u′ − u

+ fixed-t

+ fixed-u
)
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1 Dispersive approach to HLbL

Rescattering contribution

• expansion into partial waves

• unitarity gives imaginary parts in terms of helicity
amplitudes for γ∗γ(∗) → ππ:

Imππh
J
λ1λ2,λ3λ4

(s) ∝ σπ(s)hJ,λ1λ2(s)h
∗
J,λ3λ4

(s)

• framework valid for arbitrary partial waves

• resummation of PW expansion reproduces full result:
checked for pion box
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2 ππ-rescattering: S-waves

Topologies in the rescattering contribution

Our S-wave solution for γ∗γ∗ → ππ:

= + =: +

︸︷︷︸ ︸︷︷︸
recursive PWE, no LHC

Two-pion contributions to HLbL:

= + + +

︸ ︷︷ ︸ ︸ ︷︷ ︸
pion box rescattering contribution
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2 ππ-rescattering: S-waves

The subprocess

Omnès solution of unitarity relation for γ∗γ∗ → ππ

helicity partial waves:

hi(s) = ∆i(s) +
Ω0(s)

π

∫ ∞
4M2

π

ds′
Kij(s, s

′) sin δ0(s′)∆j(s
′)

|Ω0(s′)|

• ∆i(s): inhomogeneity due to left-hand cut

• Ω0(s): Omnès function with ππ S-wave phase shifts
δ0(s) as input

• Kij(s, s
′): integration kernels

• S-waves: kernels emerge from a 2×2 system for
h0,++ and h0,00 and two scalar functions A1,2
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2 ππ-rescattering: S-waves

S-wave rescattering contribution

• pion-pole approximation to left-hand cut
⇒ q2-dependence given by F V

π

• phase shifts based on modified inverse-amplitude
method (f0(500) parameters accurately reproduced)

• result for S-waves: aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11
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3 ππ-rescattering: D-waves

Extension to D-waves → JHEP 1907, 073 (2019)

• D-waves describe f2(1270) resonance in terms of ππ
rescattering

• inclusion of higher left-hand cuts (ρ, ω resonances)
necessary to reproduce observed f2(1270) resonance
peak in on-shell γγ → ππ

• NWA for vector resonance LHC with V πγ interaction

L = eCV ε
µνλσFµν∂λπVσ

• coupling CV related to decay width Γ(V → πγ)

• off-shell behaviour described by resonance transition
form factors FV π(q2)
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3 ππ-rescattering: D-waves

Topologies in the Omnès solution

Omnès solution for γ∗γ∗ → ππ with higher left-hand
cuts provides the following:

= + +

︸︷︷︸ ︸︷︷︸
recursive PWE, no LHC
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3 ππ-rescattering: D-waves

Modified Omnès representation
→ García-Martín, Moussallam 2010

hi(s) = Ni(s) +
Ω(s)

π

{∫ 0

−∞
ds′

Kij(s, s
′)Imhj(s

′)

Ω(s′)

+

∫ ∞
4M2

π

ds′
Kij(s, s

′) sin δ(s′)Nj(s
′)

|Ω(s′)|

}

• Ni(s): only Born term as inhomogeneity

• higher left-hand cuts in first dispersion integral: only
imaginary part required

• Kij(s, s
′): integration kernels from the full 5× 5

D-wave Roy–Steiner system, diagonalisable by basis
change
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3 ππ-rescattering: D-waves

Modified Omnès representation
→ García-Martín, Moussallam 2010

• sum rules for subtraction constants almost fulfilled
⇒ unsubtracted DR with small adjustment of LHC
couplings to account for higher intermediate states
→ also done in Danilkin, Vanderhaeghen 2017

• assumption on asymptotic behaviour:

h(s)−N(s)

Ω(s)
� 1

s

• bad high-energy behaviour of real part of resonance
LHC explains the need for subtraction in standard
Omnès representation
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3 ππ-rescattering: D-waves

Anomalous thresholds for large space-like q2
i

Left-hand cut structure of resonance partial waves:
s

s−cut s+
cut

sa sb

• two logarithmic branch cuts (−∞, s−cut], [s+
cut, 0]

• square-root branch cut on second sheet, but extends
into the physical sheet for q2

1q
2
2 > (M2

R −M2
π)2
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3 ππ-rescattering: D-waves

Anomalous thresholds for large space-like q2
i

• deformation of integration contour for
q2

1q
2
2 > (M2

R −M2
π)2

• anomalous singularity sa behaves for some D-wave
contributions like (sa − s)−7/2

• contour integral around sa does not vanish and
makes result finite

• cancellation performed analytically, avoiding
numerical instabilities
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3 ππ-rescattering: D-waves

On-shell results: γγ → π+π−
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3 ππ-rescattering: D-waves

On-shell results: γγ → π0π0

0

50

100

150

200

0.5 1 1.5 2

σ
(|

co
s
θ|
<

0.
8)

[n
b]

√
s [GeV]

HS19
Belle

Crystal Ball

21



3 ππ-rescattering: D-waves

Doubly-virtual results

• all technical issues with D-waves solved

• D-wave solution expressed in terms of V πγ∗

transition form factors

• asymptotic ω TFF behaviour ∼ 1/Q4

→ Farrar, Jackson 1975

• dispersive representation for space-like ω/ρ TFFs
via π0 → γ∗γ∗

→ with M. Hoferichter, B.-L. Hoid, B. Kubis, work in progress
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3 ππ-rescattering: D-waves

Contribution to aHLbL
µ

• resonance box is UV divergent

• modified Omnès representation cures UV behaviour
for sum of resonance LHC and rescattering

• compute D-wave contribution to aHLbL
µ in one go

• numerics in progress...
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4 Conclusion and outlook

Conclusion and outlook

• precise prediction for S-wave ππ-rescattering
contribution with pion-pole left-hand cut:

aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11

• technical problems for D-wave reconstruction solved:
inclusion of heavier LHCs, anomalous thresholds,
asymptotic behaviour

• upcoming BESIII data allow extraction of presently
unknown space-like TFF → talk by Ch. Redmer

• D-wave contribution to aµ work in progress

• compare to narrow-width approximation of f2(1270)
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“Dispersion relations are always true!”
Arkady Vainshtein, 11th September 2019
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